WATCOM Debugger Trap File
|nterface

VERSION 17.0

Copyright 1994 by WATCOM International Corp.

July 3, 1994

Table of Contents
(g 1070 [8To: 1 1) TSR
o SY B I {11 (0]

LI POINEES SIZES ..uveiiee ettt ettt et e e et e st e e s bee e te e s be e e beeeaeesabeesseesabeesaseenseesaseenbeesseeenbeesnnennrensns
L2 BASE TYPES ittt ettt ettt stttk b e a e bttt h e et ehe e At ae e she e eheeaReeb e e b e eheeneeae e e eaes

The REQUESE INLEITACEvieiieeiieietie bbbt
L REQUESE SEFUCLUIE. ...ttt ettt ettt sttt r e r e sr e e e e e e e e e e et erenb e s neenenrennenrean
2 The INtErfaCe ROULINEScccoviriiirrirceere et

2280 I o 1 o ST
2.2 TIADREOUESL ..ottt ettt ettt b et ae e sae et e she e see s he e b e s he e b e eae e b e eneenreenneereeaes

2.2.1 REQUESE EXAMPIE ...ttt ettt sttt st se et
R "o 1o USSR

THE REQUESES ...ttt bbb e bt b e bbb b et b et b e bbb bbb e b st e
L COrE REQUESESeieiteeeeeiet ettt ettt r et e e b e et h bt e bt e bt e b e Rt e et R b se e e n e e e e

1.1 REQ_CONNECT (0) eoreeeeeeveeeeeeeeesssseesesesseeeesessssessssssseseeesssssssesssssesesssssssssessssssessenessssseee
1.2 REQ DISCONNECT (1) ovvvvveeeeereeeeeeeeesseeeeeesessssessssssessssssessssssesssssssssssessssssssssssseesesessssssessseees
1.3 REQ_SUSPEND (2) «.oeeeeeeeeeeeeeeeeressssessesesseeesssessssesssssssesessesssssssesssssessessssssssessssssessesssssseee
1.4 REQ RESUME (3) weoororeeeeeeeeeeeeeeesessseesessssesesssesssssssssssseseessesssssssessssssssessssssssessssssssssssssssseee
1.5REQ _GET_SUPPLEMENTARY _SERVICE (4) ..ccoeeeeeeeeeeveeeeeisssssesseessssseeesessessssssssssseseennns
1.6 REQ_PERFORM_SUPPLEMENTARY _SERVICE (5) wvvvveeeeeeseeeeresseeeeesessssseessssssssessesseenn
1.7 REQ _GET_SY'S CONFIG (B) rrveervveeeeesresessseeeessssssesssssssssesssssssssssssssssesssssssssesssssssseessssseees
1.8 REQ MAP ADDR (7) crreevvveveeeeerosesseeeeesessssesseosssssseesssssssssssessssseesssssssssssesssesseesssssssessesseseeees
1.9 REQ ADDR _INFO (8) rvvvvvvveeeeeroeeseeeeeeeeseesessssssssseesssssssssssesssssesssssssseessssssesseesssssssesseesseseeees
1.10 REQ_CHECKSUM_MEM (9) oovvveeeeeeeeeseseeeeeeeeeeeessssssseesssssesesesesssssesssssseseessesesssseesssesenes
1.11 REQ _READ_MEM (10) covvvveeeeereeeeeeeeeeeeeeeesesssseesssssessessessssssessssssessssesssssssessssseeeesssssessessseees
1.12 REQ WRITE_MEM (11) covoooreereeeeeeeeeeeeeeeesessseessssssessssessssssessssssssessessssssssssssseesessssesssssseees
113 REQ READ 10 (12) ooeeevovvveeeeeeeeseeeeesseseeseeeesssssssessssssseseesssssssssssssesesessesesssessssssssessessesseee
1.14 REQ WRITE_IO (13) rvvvvvvveeeeerreeeeseeeseseesessessssssssssssssssesssesssssessssssssesssssssessssssssessessesseseeees
1.15 REQ_READ_CPU (14) vvvvvoerreereeeeeeeeseeeeenssesssssessssssssessssssssssssssssessssessssssssssssssessssssssseesssssees
1.16 REQ _READ_FPU (15) ovvvvvveeeeereseeseeeessessssessesssssssessssssssesssesssssessssssssessssssssssssssssssssssnesssseeees
1.17 REQ WRITE_CPU (16)/REQ WRITE_FPU (17) . ooovoeeveeeeeeesresesseeseeesseseeesssssssesssssesenens
1.18 REQ PROG_GO (18)/REQ_PROG_STEP (19)uovvvveeereeeereeeeesesesssseesssssessseeesssessssssessenn
1.19 REQ PROG_LOAD (20) vvvoorooeeeeeeeeeeeeeeeeesssseseesssesssssssessssseessessssssssesssssesssssssesesssssseseessseees
120 REQ PROG_KILL (21) vvvveeeeeereeeeeeeeeeeeeeeesesesseessessessessessssssessssssessssessssssseesseseesessssssssessseees
121 REQ _SET_WATCH (22) ovooorreeeeeeeeeeeeeeeeesseseseeessssseesesessssssesssssssssssessssssssssseseeeesssssssesssenes
1.22 REQ _CLEAR WATCH (23) ooeeevveeeeeeereseseeeeessesseeesssssssssessssssssseesssssssesssssssesssssssseessssseees
1.23 REQ_SET_BREAK (24) ovvveooeeeeeeeeeeeeeeveeeeesssssssesssssseseesessssssssssssssssssessssssssssssseeeesssssessessseees
1.24 REQ_CLEAR BREAK (25)eeeeeeeveeeeeesesssseeessesseeessssessssessssssssssssessssssesssssssesssssssssessssesees
1.25 REQ_GET_NEXT_ALIAS (26) eovvvvveeeeeereesseeeesesesesessesssssssssssssesessssesssssessssssssseesssssessesssenes
1.26 REQ_SET_USER_SCREEN (27) ovvvvvveveerrreseseeeesssessesssosssssseessssssesesssesssssessssssssesssssssesessseses
1.27 REQ _SET _DEBUG_SCREEN (28) vvvcoorrreeeeeeeeeeeeeeesosssssseesssssssessssssssssessssssssesssssssseeessssseees
1.28 REQ READ_USER_KEYBOARD (29) ...oovvvveeeeoeesseeeeeeseesesesesssesseeessssesesessesssssesessseseens

w

ook~ w

1.29 REQ GET_LIB_NAME (30)
1.30 REQ GET_ERR_TEXT (31)

Table of Contents

1.31 REQ_GET_MESSAGE_TEXT (32) wvveeeeeurmemeeeeeeeeeeeeesesssssseessssseeesssssssssesssssssseeesessssssessssesees
1.32 REQ_REDIRECT_STDIN (33)/REQ_REDIRECT_STDOUT (34) ..ecormeeeeeerreeeeeeerreresseeen

1.33REQ_SPLIT_CMD (35) ovvvveveeenns

2File /O reqUueSEScoeeeeeererereeeeene e

2.1 REQ _FILE_GET_CONFIG (0)
2.2 REQ _FILE_ OPEN (1) oovvvvvveennns
2.3REQ _FILE_SEEK (2) covvvvvvvveeccens
24 REQ _FILE READ (3) oovvvvvvvenn,
25REQ FILE WRITE (4) ovvvvvveeeeennns

2.6 REQ_FILE_ WRITE_CONSOLE (5) w.evvrreeereeeeeeeeeseessseessssseesesesssssssssssssssesssssssssesssssseeeeees

2.7 REQ_FILE_CLOSE (6) .vvvvveverennnns
2.8 REQ _FILE_ERASE (7) wovvvvverers

2.9 REQ _FILE_STRING_TO_FULLPATH (8) vvvvveeeeerueeeeeeesessseeeesesssseesssssssseesssssssssesssssseseeens

210 REQ _FILE_RUN_CMD (9)

3 Overlay reqUuesESccoeereereriinerieneecees

3.1REQ OVL_STATE SIZE(0)
3.2REQ OVL_GET_DATA (1)
3.3REQ_OVL_READ _STATE(2)
3.4 REQ_OVL_WRITE_STATE (3) ...

3.5 REQ_OVL_TRANS VECT ADDR (4) oeeeorvveeeeeeesessseeesseseeessesessssssessssssesssessesssssssssssessennns
3.6 REQ_OVL_TRANS_RET ADDR (5) ..reeeovveveeeeeessssssesssssseeessessssseessssssssessssssessessssssesesenon
3.7 REQ_OVL_GET_REMAP _ENTRY (8) evevreveeeeeererssssseeessseesssesessssssessssssssessssesssssssssssessennns

A Thread reqUESESccveererieieeeeeene

4.1 REQ THREAD_GET_NEXT (0) ..
4.2 REQ THREAD _SET (1) w.ocoveeren.
43 REQ THREAD FREEZE (2) ...
44 REQ THREAD THAW (3)

45REQ THREAD GET_EXTRA (4)

S5REX reqUESEScecveeeeeieieeeeeeeeeeenns

5.1 REQ RFX_RENAME (0) ...oveoon....
52 REQ RFX_MKDIR (1) woovvvvere.
53 REQ RFX_RMDIR (2) ovvvveeernnnee.
54 REQ RFX_SETDRIVE (3)
55REQ RFX_GETDRIVE (4)
5.6 REQ RFX_SETCWD (5)c......
5.7 REQ RFX_GETCWD (6)cc......
5.8 REQ RFX_SETDATETIME (7) ...
59 REQ RFX_GETDATETIME (8) ..

5.10 REQ_RFX_GETFREESPACE (9)
5.11 REQ RFX_SETFILEATTR (10)

20
21
21
22
22

23

23
23
24
25
25
26
26
26
27
27

28

29
29
29
30
30
31
31

32

32
32
33
33

35
35
35
36
36
37
37
37
38
38

Table of Contents
5.12 REQ RFX_GETFILEATTR (11) oooovoeeeeeeeeeeseeseesesseessssesssesessssssssesssessssssssssssssssessssssnsens
5.13 REQ_RFX_NAMETOCANNONICAL (12) ...ccvorerrereereriereerenmsreeesesrerese s seseenas
5.14 REQ_RFX_FINDFIRST (13) ..oceoireirireiererieiee s s
5.15 REQ_RFX_FINDNEXT (14) ..oceieiiieieeererieiee st s e s
5.16 REQ_RFX_FINDCLOSE (15) ...cctiiieieiriririeiiiresieieesesieie et b et
SYSLEM DEPENAENT ASPECEScueiuiriiiiitiste ettt e et ae st sbesbesaeseebesbese e e e e e e e neeseeneeaesbesbeseesbebas
L1Trap FIlESUNCEr DOS ..ottt sttt b e b e b e e b et e saebennene e
2Trap FIESUNAEr OS2 ...ttt b ettt bttt e e es
3Trap FIlesS UNAer WINAOWS.coveeeiiiie e stes e ste s se e e e sttt te e st saenaenaenae e ensenessessenss
A Trap FlesUNnder WINAOWS NT. ...ttt s b b s e b e e
S5Trap FIlES UNAEr QNX ...ttt sttt e a et aeebesbesaesbe b se e s e e e e e e aneas

6 Trap Files Under Netware 386 OF PENPOINTcceiieiieirirenesese e e ssessesnesnens

39
39
39
40
4
42
42
42
43

43

I ntroduction

The WATCOM debugger consists of a number of separate pieces of code. The main executable, WD.EXE,
provides a debugging ‘engine’ and user interface. When the engine wishes to perform an operation upon
the program being debugged such as reading memory or setting a breakpoint, it creates a request structure
and sends it to the ‘trap file’ (so called because under DOS, it contains the first level trap handlers). The
trap file examines the request structure, performs the indicated action and returns a result structure to the
debugger. This design has two main benefits:

1. OS debugging interfaces tend to be wildly varying in how they are accessed. By moving al the
OS specific interface code into the trap file and having a defined interface to access it, porting the
debugger becomes much easier.

2. The trap file does not have to actually perform the operation. Instead it could send the request out
to a remote server by a communication link such as a serial line or LAN. The remote server can
retrieve the request, perform the operation on the remote machine and send the results back via the
link. This enables the debugger to debug applications in cases where there are memory contraints or
other considerations which prevent the debugger proper from running on the remote system (such
as Novell Netware 386).

This document describes the interface used by version 4.0 of the WATCOM debugger (shipped with the

10.0 C/C++ and FORTRAN releases). It is expected to be modified in future releases. Where possible,
notification of expected changes are given in the document, but all aspects are subject to revision.

1 Some Definitions

1.1 Pointer Sizes

In a 16-bit hosted environment such as DOS, all pointers used by the trap file are "far" 16:16 pointers. In a
32-bit environment such as Windows NT the pointers are "near" 0:32 pointers.

1.2 Base Types

A number of basic types are used in the interface. They are defined as follows:

Type Definition

unsigned_8 1 byte unsigned quantity

unsigned_16 2 byte unsigned quantity

unsigned_32 4 byte unsigned quantity

Introduction 1

access req

addr48 ptr

bytes

string

trap_error

Introduction

The first field of every request is of this type. It is a 1 byte field which identifies the
request to be performed.

This type encapsulates the concept of a 16:32 pointer. All addresses in the debuggee
memory are described with these. The debugger always acts asif the debuggee werein a
32-hit large model environment since the 32-hit flat model and all 16-bit memory models
are subsets. The structure is defined as follows:

typedef struct {
unsi gned_32 of fset;
unsi gned_16 segnent ;
} addr48_ptr;

The segnment field contains the segment of the address and the of f set field stores the
offset of the address.

The type byt es is an array of unsigned 8. The length is provided by other means.
Typically afield of type byt es is the last one in a request and the length is calculated
from the total length of the request.

The type string is actually an array of characters. The array is terminated by a null
('\Q') character. The length is provided by other means. Typically a field of type
string isthe last one in a request and the length is calculated from the total length of
the request.

Some trap file requests return debuggee operating system error codes, notably the
requests to perform file I/O on the remote system. These error codes are returned as an
unsigned 32. The debugger considers the value zero to indicate no error.

The Request I nterface

1 Request Structure.

Each request is a composed of two sequences of bytes provided by the debugger called messages. The first
set contains the actual request code and whatever parameters that are required by the request. The second
sequence is where the result of the operation is to be stored by the trap file.

The two sequences need not be contiguous. The sequences are described to the trap file through two arrays
of message entry structures. This alows the debugger to avoid unnecessary packing and unpacking of
messages, since mx_entry’s can be set to point directly at parameter/result buffers.

Multiple requests are not alowed in a single message. The mx_entry’s are only used to provide
scatter/gather capabilities for one request at atime.

The message entry structure is asfollows:

typedef struct {
voi d FAR *ptr;
unsi gned_16 | en;
} nx_entry;

Thept r ispointing to ablock of datafor that message entry. Thel en field gives the length of that block.
One array of mx_ent r y’ s describes the request message. The second array describes the return message.

It is not legal to split a message into arbitrary pieces with mx_entries. Each request documents where an
mx_entry is alowed to start with aline of dashes.

2 The Interface Routines

The trap file interface must provide three routines: Trapl nit, TrapRequest, and TrapFi ni . These
routines are invoked with standard WATCOM register calling conventions. How the debugger determines
the address of these routines after loading atrap file is system dependent and described later.

2.1 Traplnit

This function initializes the environment for proper operation of Tr apRequest .

The Request Interface 3

trap_version FAR Traplnit(char FAR *par m
char FAR *error,
unsi gned_8 renote

)

The par mis a string that the user passes to the trap file. Its interpretation is completely up to the trap file.
In the case of the WATCOM debugger, al the characters following the semicolon in the /TRAP option are
passed as the par m For example:

wd /trap=nov;testing program

The par mwould be "testing". Any error message will bereturned inerror. Ther enot e field isa zero if
the WATCOM debugger is loading the trap file and a one if a remote server is loading it. This function
returns a structuret r ap_ver si on of the following form:

typedef struct {
unsi gned_8 nmj or;
unsi gned_8 minor;
unsi gned_8 renote;
} trap_version;

The maj or field contains the major version number of the trap file while the mi nor field tells the minor
version number of the trap file. Maj or is changed whenever there is a modification made to the trap file
that is not upwardly compatable with previous versions. M nor increments by one whenever a change is
made to the trap file that is upwardly compatible with previous versions. The current major verion is 17,
the current minor version is0. Ther enot e field informs the debugger whether the trap file communicates
with aremote machine.

Trapl nit must be called before using Tr apRequest to send a request. Failure to do so may result in
unpredictable operation of Tr apRequest .

2.2 TrapRequest

All requests between the server and the remote trap file are handled by TrapRequest.

unsi gned TrapRequest(unsi gned num_i n_nx,
nmk_entry *nx_in,
unsi gned num out _nx,
mk_entry *nx_out

)

The nx_i n points to an array of request mx_entry’s. The num.i n_nx field contains the number of
elements of the array. Similarly, the mx_out will point to an array of return mx_entry’s. The number of
elements will be given by the num out _nx field. The total number of bytes actually filled in to the return
message by the trap file is returned by the function (this may be less than the total number of bytes
described by the mx_out array).

Since every request must start with an access_r eq field, the minimum size of a request message is one
byte.

The Request Interface 4

Some requests do not require a return message. In this case, the program invoking TrapRequest must pass
zero for num out _nmx and NULL for nx_out .

2.2.1 Request Example

The request REQ_READ_MEM needs the memory address and length of memory to read as input and will
return the memory block in the output message. To read 30 bytes of memory from address 0x0010:0x8000
into a buffer, we can write:

nmx_entry in[1];
mx_entry out[1];
unsi gned char buf fer[30];
struct in_nsg_def {
access_req req;
addr 48 _ptr addr;
unsi gned_16 | en;
} in_nmsg = { REQ READ MEM { 0x8000, 0x0010 }, sizeof(buffer) };

unsi gned_16 mem bl k_| en;
in[0].ptr = & n_nsg;

in[0].len = sizeof (in_nsg);
out[0].ptr = &buffer;
out[0].len = sizeof (buffer);

memblk len = TrapRequest(1, in, 2, out);

if(memblk_length !'= sizeof (buffer)) {
printf("Error in reading nmenory\n");
} else {
printf("O\n");

The program will print "OK" if it has transferred 30 bytes of data from the debuggee’ s address space to the
buf f er variable. If lessthan 30 bytesis transfered, an error message is printed out.

2.3 TrapFini

The function terminates the link between the debugger and the trap file. It should be called after finishing
all access requests.

voi d FAR TrapFi ni (voi d);

After calling Tr apFi ni , itisillega to call Tr apRequest without calling Tr apl ni t again.

The Request Interface 5

The Requests

This section descibes the individual requests, their parameters, and their return values. A line of dashes
indicates where an mx_entry is alowed (but not required) to start. The debugger alows (via
REQ_GET_SUPPLEMENTARY_SERVICE/REQ PERFORM_SUPPLEMENTARY_SERVICE)

optional components to be implemented only on specific systems.

The numeric value of the request which is placed in the req field follows the symbolic name in
parentheses.

1 Core Requests

These requests need to be implemented in al versions of the trap file, although some of them may only be
stub implementations in some environments.

1.1 REQ_CONNECT (0)

Request to connect to the remote machine. This must be the first request made.

Request message:
access_req req
unsi gned_8 nmaj or; <-+- struct trap_version
unsi gned_8 m nor; |
unsi gned_8 renote; <-+

Ther eq field contains the request. Thetrap_ver si on structure tells the version of the program making
the request. The maj or field contains the major version number of the trap file while the mi nor field tells
the minor version number of the trap file. The maj or is changed whenever there is a modification made to
the trap file that is not upwardly compatable with previous versions. The ni nor increments by one
whenever a change is made to the trap file that is upwardly compatable with previous versions. The current

major version is 17, the current minor version is 0. The renot e field informs the trap file whether a
remote server is between the WATCOM debugger and the trap file.

Return message:
unsi gned_16 nax_nsg_si ze
string err_msg

If error has occurred, the err_nsg field will returns the error message string. If there is no error,
error_nsg returns a null character and the field max_nsg_si ze will contain the allowed maximum size

The Requests 6

of amessage in bytes. Any message (typically reading/writing memory or files) which would require more
than the maximum number of bytes to transmit or receive must be broken up into multiple requests. The
minimum acceptable value for thisfield is 256.

1.2 REQ_DISCONNECT (1)

Request to terminate the link between the local and remote machine. After this request, a
REQ_CONNECT must be the next one made.

Request message:
access_req req

Ther eq field contains the request.

Return message:

NONE

1.3 REQ_SUSPEND (2)

Request to suspend the link between the server and the remote trap file. The debugger issues this message
just before it spawns a sub-shell (the "system" command). This alows a remote server to enter a state
where it allows other trap files to connect to it (normally, once aremote server has connected to atrap file,
the remote link will fail any other attempts to connect to it). This alows the user to start up an RFX
process and transfer any missing files to the remote machine before continuing the debugging process.

Request message:

access_req req
Ther eq field contains the request.

Return message:

NONE

1.4REQ_RESUME (3)

Request to resume the link between the server and the remote trap file. The debugger issues this request
when the spawned sub-shell exits.

Request message:

access_req req

The Requests 7

Ther eq field contains the request.

Return message:

NONE

1.5REQ_GET_SUPPLEMENTARY_SERVICE (4)

Request to obtain a supplementary serviceid.

Request message:
access_req req
string servi ce_nane

The req field contains the request. The service_nane field contains a string identifying the
supplementary service. Thisstring is case insensitive.

Return message:
trap_error err
unsi gned_32 id

The err field is non-zero if something went wrong in obtaining or initializing the service. 1d is the
identifier for a particular supplementary service. It need not be the same from one invocation of the trap
file to another. If both it and the er r field are zero, it means that the service is not available from this trap
file.

NOTE: In the future, we might alow for user developed add-ons to be integrated with the debugger.
There would be two components, one to be added to the debugger and one to be added to the trap
file. The two pieces could communicate with each other via the supplementary services
mechanism.

1.6 REQ_PERFORM_SUPPLEMENTARY_SERVICE (5)

Request to perform a supplementary service.

Request message:
access_req req
unsi gned_32 service_id

unspeci fi ed

Ther eq field contains the request. The ser vi ce_i d field indicates which service is being requested. The
remainder of the request is specified by the individual supplementary service provider.

The Requests 8

Return message:

unspeci fied

The return message is specified by the individua supplementary service provider.

1.7 REQ_GET_SYS_CONFIG (6)

Request to get system information from the remote machine.

Request message:

access_req

req

Ther eq field contains the request.

Return message:

unsi gned_8
unsi gned_8
unsi gned_8
unsi gned_8
unsi gned_8
unsi gned_8

cpu;
fpu;

osnmj or;
osmni nor ;
0S;
huge_shi ft;

The cpu fields returns the type of the remote CPU. The size of that field is unsigned_8. Possible cpu types

are:

CPU_86
CPU_186
CPU_286
CPU_386
CPU_486
CPU 586

ab~hwNEFO

Thef pu fieldstells the type of FPU. The size of the field isunsigned 8. FPU typesinclude:

FPU_EMJ
FPU_NO
FPU_87
FPU_287
FPU 387

- Software enul ated FPU
- No FPU

WN PR OPF

The osmaj or and osni nor contains the major and minor version number for the operating system of the
remote machine. The type of operating system can be found in os field. The size of this fidd is

unsigned 8. The OS can be:

The Requests

GOS_| DUNNO = 0 - Unknown operating system
Cs_DOs = 1

0s_0s2 = 2

OS_PHAR = 3 - Phar Lap 386 DOS Extender
OCS ECLIPSE = 4 - Eclipse 386 DOS Extender
CS_NV\B86 = 5 - NetWare 386

s _QN\X = 6

OCS RATIONAL = 7 - DOS/4G

OS_ WNDOWs = 8

CS_PENPONT = 9

CS_NT =10

OS_AUTCCAD = 11 - ADS/ ADI devel opnent

The huge_shi ft field is used to determine the shift needed for huge arithmetic in that system. It stores
the number of left shifts required in order to calculate the next segment correctly. It is 12 for real mode
programs. The value in a protect mode environment must be obtained from the OS of the debuggee
machine.

1.8 REQ MAP_ADDR (7)

Request to map the input address to the actual address of the remote machine. The addresses in the
symbolic information provided by the linker do not reflect any relocation performed on the executable by
the system loader. This regquest obtains that relocation information so that the debugger can update its
addresses.

Request message:
access_req req
addr48_ptr i n_addr
unsi gned_32 handl e;

Ther eq field contains the request. Thei n_addr tells the address to map. The handl e field identifies the
module which the address is from. The value from this field is obtained by REQ _PROG_LOAD or
REQ _GET_LIB_NAME. There are two magical valuesfor thei n_addr . segnment field.

MAP_FLAT CODE_SELECTOR
MAP_FLAT DATA_SELECTOR

-1
-2

When the i n_addr. segnent eguals one of these values, the debugger does not have a map segment
value and is requesting that the trap file performs the mapping as if the given offset was in the flat address
space.

Return message:
addr48 _ptr out _addr
unsi gned_32 | o_bound;
unsi gned_32 hi _bound;

The mapped address is returned in out _addr . Note that in addition to the segment portion being modified,
the offset of the portion of the address may be adjusted as well if the loader performs offset relocations
(like OS/2 2.x or Windows NT). Thel o_bound and hi _bound fields identify the lowest and highest input

The Requests 10

offsets for which this mapping is valid. If the debugger needs to map another address whose input segment
value is the same as a previous request, and the input offset falls within the valid range identified by the
return of that previous reguest, it can perform the mapping itself and not bother sending the request to the
trap file.

1.9 REQ_ADDR_INFO (8)

Request to check if a given address is using 32-bit addressing (the selector’s B-bit is on) by default. The
debugger requires this information to properly disassemble instructions.

Request message:
access_req req
addr48 _ptr i n_addr

Ther eq field contains the request and thei n_addr tellsthe input address.

Return message:

unsi gned_8 is_32

Thefield returns one if the address is a USE32 segment, zero otherwise.

1.10 REQ CHECKSUM_MEM (9)

Request to calculate the checksum for a block of memory in the debuggee’ s address space. Thisis used by
the debugger to determine if the contents of the memory block have changed since the last time it was
read. Since only afour byte checksum has to be transmitted back, it is more efficient than actually reading
the memory again. The debugger does not care how the checksum is calculated.

Request message:
access_req req
addr48 _ptr i n_addr
unsi gned_16 I en

Ther eq field stores the request. The i n_addr contains the starting address and the | en field tells how
large the block of memory is.

Return message:

unsi gned_32 result

The checksum will bereturnedinresul t .

The Requests 11

1.11 REQ_READ_MEM (10)

Request to read a block of memory.

Request message:
access_req req
addr48 _ptr nem addr
unsi gned_16 I en

The mem addr contains the address of the memory block to read from the remote machine. The length of
the block is determined by | en. The memory data will be copied to output message.

Return message:

byt es dat a
The dat a field stores the memory block read in. The length of this memory block is given by the return
value from TrapRequest. If error has occurred in reading memory, the length of the data returns will not be
equal to the number of bytes requested.
112 REQ WRITE_MEM (11)

Request to write a block of memory.

Request message:
access_req req
addr48_ptr mem addr
byt es dat a

The dat a field stores the memory data to be transferred. The data will be stored in the debuggee's address
space starting at the address in the mem_addr field.

Return message:

unsi gned_16 I en
The | en field tells the length of memory block actually written to the debuggee machine. If error has
occurred in writing the memory, the length returned will not be equal to the number of bytes requested.
1.13REQ_READ_I0 (12)

Request to read data from /O address space of the debuggee.

The Requests 12

Request message:

access_req req
unsi gned_32 | O _of f set
unsi gned_8 I en

The | O of f set contains the I/O address of the debuggee machine. The length of the block is determined
by I en. It must be 1, 2 or 4 bytes. The datawill be copied from | O _of f set to the return message.

Return message:

byt es dat a
The dat a field stores the memory block read in. The length of this memory block is given by the return
value from TrapRequest. If an error has occurred in reading, the length returned will not be equal to the
number of bytes requested.

1.14 REQ WRITE_IO (13)

Request to write data to the 1/O address space of the debuggee.

Request message:
access_req req
unsi gned_32 1 O of fset
byt es dat a

Thel O of f set contains the I/O address of the debuggee machine. The data stored in dat a field will be
copiedto | O of f set on the debuggee machine.

Return message:

unsi gned_8 I en

The en field tells the number of bytes actually written out. If an error has occurred in writing, the length
returned will not be equal to the number of bytes requested.

1.15 REQ _READ_CPU (14)

Request to read the CPU registers.

Request message:

access_req req

Return message:

The Requests 13

byt es dat a

The dat a field contains the register information requested. It contains the following structure:

struct cpu_regs {
unsi gned_32 EAX
unsi gned_32 EBX
unsi gned_32 ECX;
unsi gned_32 EDX;
unsi gned_32 ESI;
unsi gned_32 EDI;
unsi gned_32 EBP;
unsi gned_32 ESP;
unsi gned_32 EIP
unsi gned_32 EFL;
unsi gned_32 CRO;
unsi gned_32 CR2;
unsi gned_32 CRS;
unsi gned_16 DS;
unsi gned_16 ES;
unsi gned_16 SS
unsi gned_16 CS;
unsi gned_16 FS
unsi gned_16 GS;
s

1.16 REQ READ_FPU (15)

Request to read the FPU registers.

Request message:

access_req req
Return message:

byt es dat a

The dat a field contains the register information requested. Its format is the same as the result of a"fsave"
instruction in a 32-bit segment (the instruction pointer and operand pointer fields take up 8 bytes each).
Implementations of trap files in 16-bit environments should expand the instruction pointer and operand
pointer fields from 4 bytes to 8 (shuffling the data register fields down in memory) before returning the
result to the debugger.

1.17 REQ WRITE_CPU (16)/REQ WRITE_FPU (17)

Requests to write to the CPU or FPU state.

Request message:

The Requests 14

access_req req

Information in dat a field will be transfered to the debuggee's registers. The formats of data can be found
in REQ READ_CPU/REQ READ_FPU

NOTE: For the REQ WRITE_FPU case, the data will be in a 32-bit "fsave" instruction format, so 16-hbit
environments will have to squish the instruction and operand pointer fields back to their 4 byte
forms.

Return message:

NONE

1.18 REQ_PROG_GO (18)/REQ PROG_STEP (19)

Requests to execute the debuggee. REQ PROG_GO causes the debuggee to resume execution, while
REQ PROG_STEP requests only a single machine instruction to be executed before returning. In either
case, this request will return when a breakpoint, watchpoint, machine exception or other significant event
has been encountered. While executing, a trap file is allowed to return spurious COND_WATCH
indications. The debugger aways checks its own watchpoint table for changes before reporting to the
user. This means that a legal implementation of a trap file (but very inefficient) can just single step the
program and return COND_WATCH for every instruction when there are active watchpoints present.

Request message:

access_req req

Therequestisinr eq field.

Return message:
addr48 _ptr st ack_pointer
addr48_ptr progr am count er
unsi gned_16 condi tions

The stack_pointer and program counter fields store the latest values of SS.ESP and CSEIP
respectively. The condi ti ons informs the debugger what conditions have changed since execution
began. It contains the following flags:

The Requests 15

Bit O COND_CONFI G Configurations change
Bit 1 COND_SECTI ONS Program overl ays change
Bit 2 COND_LI BRARI ES Li braries (DLL) change
Bit 3 COND_ALI ASI NG Ali as change

Bit 4 COND_THREAD Thread change

Bit 5 COND_THREAD_EXTRA Thread extra change

Bit 6 COND_TRACE Trace point occurred
Bit 7 COND_BREAK Break point occurred
Bit 8 COND_WATCH Wat ch point occurred
Bit 9 COND_USER User interrupt

Bit 10 COND_TERM NATE Program term nated

Bit 11 COND_EXCEPTI ON Machi ne exception

Bit 12 : COND_MESSAGE Message to be displ ayed
Bit 13 : COND _STOP Debuggee wants to stop
Bit 14-15 not used

When abit is off, the debugger avoids having to make additional requests to determine the new state of the
debuggee. If the trap file is not sure that a particular item has changed, or if it is expensive to find out, it
should just turn the bit on.

1.19 REQ_PROG_LOAD (20)

Request to load a program.

Request message:
access_req req
unsi gned_8 true_argv
byt es ar gv

Thet rue_ar gv field indicates whether the argument consists of a single string, or atrue C-style argument
vector. This field is set to be one for a true argument vector and zero otherwise. The ar gv is a set of
zero-terminated strings, one following each other. The first string gives the name of the program to be
loaded. The remainder of the ar gv field contains the program’s arguments. The arguments can be asingle
string or an array of strings.

Return message:
trap_error err
unsi gned_32 task_id
unsi gned_32 nod_handl e
unsi gned_8 flags

Theerr field returns the error code while loading the program. Thet ask_i d showsthe task (process) ID
for the program loaded. The nod_handl e is the system module identification for the executable image. It
isused asinput to the REQ_MAP_ADDR request. Thef | ags field contains the following information:

The Requests 16

Bit O LD FLAG IS 32 - 32-bit program
Bit 1 LD FLAG | S _PROT - Protected node
Bit 2 LD FLAG | S _STARTED - Program al ready started
Bit 3 : LD FLAG | GNORE_SEGMENTS - lgnore segnments (flat)
Bit 4 - 7 : not used
1.20 REQ_PROG _KILL (21)
Request to kill the program.
Request message:
access_req req
unsi gned_32 task_id

Ther eq field contains the request. Thet ask_i d field (obtained from REQ_PROG_LOAD) identifies the
program to be killed.

Return message:
trap_error err

Theerr field returnsthe error code of the OS kill program operation.

1.21 REQ SET_WATCH (22)

Request to set awatchpoint at the address given.

Request message:
access_req req
addr48 _ptr wat ch_addr
unsi gned_8 si ze

The address of the watchpoint is given by the wat ch_addr field. The si ze field gives the number of
bytes to be watched.

Return message:
trap_error err
unsi gned_32 mul tiplier

The err field returns the error code if the setting failed. |If the setting of the watchpoint worked, the 31
low order bits of mul ti plier indicate the expected slow down of the program when it's placed into
execution. The top bit of the field is set to one if a debug register is being used for the watchpoint, and
zero if the watchpoint is being done by software.

The Requests 17

1.22 REQ CLEAR WATCH (23)

Request to clear awatchpoint at the address given. The trap file may assume all watch points are cleared at
once.

Request message:
access_req req
addr 48 _ptr wat ch_addr
unsi gned_8 si ze

The address of the watch point is given by the wat ch_addr field. The si ze field gives the size of the
watch point.

Return message:

NONE

123 REQ_SET_BREAK (24)

Request to set a breakpoint at the address given.

Request message:
access_req req
addr48 _ptr br eak_addr

The address of the break point is given by the br eak _addr field.

Return message:

unsi gned_32 old

Theol d field returns the original byte(s) at the address br eak_addr .

1.24 REQ CLEAR_BREAK (25)

Request to clear a breakpoint at the address given. The trap file may assume al breakpoints are cleared at
once.

Request message:
access_req req
addr48_ptr br eak_addr
unsi gned_32 old

The Requests 18

The address of the break point is given by the br eak_addr field. The ol d field holds the old instruction
returned from the REQ_SET_BREAK reguest.

Return message:

NONE

1.25REQ GET_NEXT_ALIAS (26)

Request to get alias information for a segment. In some protect mode environments (typically 32-bit flat)
two different selectors may refer to the same physical memory. Which selectors do thisis important to the
debugger in certain cases (so that symbolic information is properly displayed).

Request message:
access_req req
unsi gned_16 seg

The seg field contains the segment. To get the first aias, put zero in thisfield.

Return message:
unsi gned_16 seg
unsi gned_16 alias

The seg field contains the next segment where an dias appears. If this field returns zero, it implies no
more aliases can be found. The al i as field returns the alias of the input segment. Zero indicates a
previously set alias should be deleted.

1.26 REQ_SET_USER_SCREEN (27)

Request to make the debuggee’ s screen visible.
Request message:

access_req req

Return message:

NONE

1.27 REQ_SET_DEBUG_SCREEN (28)

Request to make the debugger’ s screen visible.

The Requests 19

Request message:

access_req req

Return message:

NONE

1.28 REQ READ_USER_KEYBOARD (29)

Request to read the remote keyboard input.

Request message:
access_req req
unsi gned_16 wai t

The request will be time out if it waits longer than the period specifies in the wai t field. The waiting
period is measured in seconds. A value of zero means to wait forever.

Return message:
unsi gned_8 key

Thekey field returns the input character from remote machine.

1.29 REQ GET_LIB_NAME (30)

Request to get the name of anewly loaded library (DLL).

Request message:
access_req req
unsi gned_32 handl e

The handl e field contains the library handle. It should be zero to get the name of the first DLL or the
value from the handl e of a previous request.

Return message:
unsi gned_32 handl e
string nane

The handl e field contains the library handle. It contains zero if there are no more DLL names to be
returned. The name of the library will bereturned in nane field.

The Requests 20

1.30 REQ GET_ERR_TEXT (31)

Request to get the error message text for an error code.

Request message:
access_req req
trap_error err

Theerr field contains the error code number of the error text requested.

Return message:

string error_nsg

The error message text will be returned inerr or _nsg field.

1.31 REQ GET_MESSAGE_TEXT (32)

Request to get generic message text. After a REQ PROG_LOAD, or
REQ_PROG_GO/REQ_PROG_STEP has returned with COND_MESSAGE/COND_EXCEPTION, the
debugger will make this request to obtain the message text. In the case of a COND_EXCEPTION return
text describing the machine exception that caused the return to the debugger. Otherwise return whatever
generic message text that the trap file wants to display to the user.

Request message:
access_req req
Return message:
unsi gned_8 fl ags
string nsg

The message text will be returned in the nsg field. Thef | ags contains a number of bits which control the
next action of the debugger. They are:

Bit O MSG_NEWLI NE
Bit 1 M5G_MORE
Bit 2 MSG_WARNI NG
Bit 3 . MSG_ERROR
Bit 4 - 7 . not used

The MSG_NEWLINE bit indicates that the debugger should scroll its display to a new line after
displaying the message. The MSG_MORE hit indicates that there is another line of output to come and

The Requests 21

the debugger should make another REQ_GET_MESSAGE_TEXT. MSG_WARNING indicates that the
message is awarning level message while MSG_ERROR is an error level message. If neither of these bits
are on, the message is merely informational .

1.32 REQ_REDIRECT_STDIN (33)/REQ_REDIRECT_STDOUT (34)

Request to redirect the standard input (REQ_REDIRECT_STDIN) or standard output
(REQ_REDIRECT_STDOUT) of the debuggee.

Request message:
access_req req
string nane

The file name to be redirected to/from is given by the nane field.

Return message:

trap_error err
When an error has occurred, the er r field contains an error code indicating the type of error that has been
detected.
1.33REQ _SPLIT_CMD (35)

Request to split the command line into the command name and parameters.

Request message:
access_req req
string crmd

The cnd field contains the command. Command can be a single command line or an array of command
strings.

Return message:
unsi gned_16 cmd_end
unsi gned_16 parm start

The cnd_end field tells the position in command line where the command name ends. The par m st art
field stores the position where the program arguments begin.

The Requests 22

2 File1/O requests

This section describes requests that deal with file input/output on the debuggee machine. These requests
are actually performed by the core request REQ PERFORM_SUPPLEMENTARY_SERVICE and
appropriate service id. The following descriptions do not show do not show that "prefix" to the request

messages.
The service name to be used in the REQ_GET_SUPPLEMENTARY_SERVICE is
"Files'. Thefile requests use an new basic type in addition to the ones already described:
Type Definition

trap_fhandle Thisisan unsigned 32 which holds a debuggee file handle.

2.1 REQ FILE_GET_CONFIG (0)

Request to retreive characteristics of the remote file system.

Request message:
access_req req

Return message:
char ext _separat or;
char pat h_separator|[3];
char new i ne[2] ;

The ext _separ at or contains the separator for file name extensions. The possible path separators can be
found in array pat h_separ at or . The first one isthe "preferred” path separator for that operating system.
This is the path separator that the debugger will use if it needs to construct a file name for the remote
system. The new line control characters are stored in array newl i ne. If the operating system uses only a
single character for newline, put a zero in the second element.

2.2 REQ FILE_OPEN (1)

Request to create/open afile.

Request message:
access_req req
unsi gned_8 node
string nane

The Requests 23

The name of the file to be opened is given by nane. The node field stores the access mode of thefile. The
following bits are defined:

Bit O | O_READ

Bit 1 IO WRI TE
Bit 2 : | O CREATE
Bit 3 - 7 : not used

For read/write mode, turn both | O READ and | O WRI TE hitson.

Return message:
trap_error err
trap_fhandl e handl e

If successful, the handl e returns a handle for the file. When an error has occurred, the er r field contains
avalue indicating the type of error that has been detected.

2.3REQ FILE_SEEK (2)

Request to seek to a particular file position.

Request message:
access_req req
trap_fhandl e handl e
unsi gned_8 node
unsi gned_32 pos

The handle of the file is given by the handl e field. The node field stores the seek mode. There are three
seek modes:

DBG_SEEK_ORG
DBG_SEEK_CUR
DBG_SEEK_END

0 - Relative to the start of file
1 - Relative to the current file position
2 - Rrelative to the end of file

The position to seek to isin the pos field.

Return message:
trap_error err
unsi gned_32 pos

If an error has occurred, the err field contains a value indicating the type of error that has been detected.
The pos field returns the current position of thefile.

The Requests 24

24REQ FILE_READ (3)

Request to read a block of datafrom afile.

Request message:
access_req req
trap_fhandl e handl e
unsi gned_16 I en

The handle of the file is given by the handl e field. The | en field stores the number of bytes to be
transmitted.

Return message:
trap_error err
byt es dat a

If successful, the dat a returns the block of data. The length of returned data is given by the return value
of TrapRequest minus 4 (to account for the size of err). The length will normally be equal to the | en
field. If the end of file is encountered before the read completes, the return value will be less than the
number of bytes requested. When an error has occurred, the er r field contains a value indicating the type
of error that has been detected.

25REQ FILE_WRITE (4)

Request to write a block of datato afile.

Request message:
access_req req
trap_f handl e handl e
byt es dat a

The handle of the fileis given by the handl e field. The dataisgivenin dat a field.

Return message:
trap_error err
unsi gned_16 I en

If thereisno error, | en will equal to that in thedat a_| en field. When an error has occurred, theer r field
contains a value indicating the type of error that has been detected.

The Requests 25

2.6 REQ FILE_WRITE_CONSOLE (5)

Request to write a block of datato the debuggee's screen.

Request message:
access_req req
byt es dat a

Thedataisgivenindat a field.

Return message:
trap_error err
unsi gned_16 I en

If there is no error, | en will equal to the data_| en field. When an error has occurred, the err field
contains a value indicating the type of error that has been detected.

2.7REQ _FILE_CLOSE (6)

Request to close afile.

Request message:
access_req req
trap_f handl e handl e

The handle of the fileis given by the handl e field.

Return message:

trap_error err

When an error has occurred, the err field contains a value indicating the type of error that has been
detected.

2.8REQ FILE_ERASE (7)
Request to erase afile.

Request message:

The Requests 26

access_req req

string file_name
Thefil e_name field contains the file name to be deleted.

Return message:
trap_error err

If error has occurred when erasing thefile, theer r field will return the error code number.

29REQ FILE_STRING TO FULLPATH (8)

Request to convert afile nameto its full path name.

Request message:
access_req req
unsi gned_8 file_type
string file_name

Thefil e_t ype field indicates the type of theinput file. File types can be:

FI LE_EXE
FI LE_DBG
FI LE_PRS
FILE_HLP

o
WN RO

Thisis so the trap file can search different paths for the different types of files. For example, under QNX,
the PATH environment variable is searched for the FILE_EXE type, and the WD_PATH environment
variable is searched for the others. Thefi | e_nane field contains the file name to be converted.

Return message:
trap_error err
string pat h_name

If no error occurs the err field returns a zero and the full path name will be stored in the pat h_name
field. When an error has occurred, the er r field contains an error code indicating the type of error that has
been detected.

2.10REQ_FILE_RUN_CMD (9)

Request to run acommand on the debuggee' s system

The Requests 27

Request message:

access_req req
unsi gned_16 chk_size
string cmd

Thechk_si ze field gives the check sizein kilobytes. Thisfield is only useful in the DOS implementation.
It contains the value of the /CHECKSIZE debugger command line option and represents the amount of
memory the user wishes to have free for the spawned sub-shell.The cnd field stores the command to be
executed.

Return message:

trap_error err

If error has occurred when executing the command, theer r field will return the error code number.

3 Overlay requests

This section describes requests that deal with overlays (currently supported only under 16-bit DOS).
These reguests are actually performed by the core request
REQ_PERFORM_SUPPLEMENTARY_SERVICE and appropriate service id. The following
descriptions do not show do not show that "prefix" to the request messages.

The service name to be used in the REQ_GET_SUPPLEMENTARY _SERVICE is"Overlays'.

The overlay requests use an new basic type in addition to the ones already described:

Type Definition

addr32_ptr This type encapsulates the concept of a 16:16 pointer into the debuggee’ s address space.

Since overlays are only useful for 16-bit environments, using the addr48_ptr type would
beinefficient. The structureis defined as follows:

typedef struct {
unsi gned_16 of f set;
unsi gned_16 segnent ;
} addr32_ptr;

The segnment field contains the segment of the address and the of f set field stores the
offset of the address.

The Requests 28

3.1REQ OVL_STATE_SIZE (0)
Request to return the size of the overlay state information in bytes of the task program. This request maps

onto the overlay manager’'s GET_STATE_SIZE request. See the Overlay Manager Interface document for
more information on the contents of the return message.

Request message:

access_req req
Ther eq field contains the request.

Return message:

unsi gned_16 si ze
Thesi ze field returns the size in bytes. A value of zero indicates no overlays are present in the debuggee
and none of the other requests dealing with overlays will ever be called.
3.2REQ _OVL_GET DATA(1)
Request to get the address and size of an overlay section. This request maps onto the overlay manager’s

GET_SECTION_DATA request. See the Overlay Manager Interface document for more information on
the contents of the return message.

Request message:
access_req req
unsi gned_16 sect _id

Thesect _i d field indicates the overlay section the information is being requested of .

Return message:
unsi gned_16 segment
unsi gned_32 si ze

The segnent field contains the segment value where the overlay section is loaded (or would be loaded if
it was brought into memory). Thesi ze field gives the size, in bytes, of the overlay section. If thereisno
section for the given id, the segrment field will be zero.

3.3REQ_OVL_READ_STATE (2)

Request to read the overlay table sate. This request maps onto the overlay manager's
GET_OVERLAY_STATE request. See the Overlay Manager Interface document for more information on

The Requests 29

the contents of the return message. The size of the returned data is provided by the
REQ_OVL_STATE_SIZE trap file request.

Request message:

access_req req
Return message:

byt es dat a

The dat a field contains the overlay state information requested.

34REQ OVL_WRITE_STATE (3)

Request to write the overlay table state. This request maps onto the overlay manager's
SET OVERLAY_STATE request. See the Overlay Manager Interface document for more information on
the contents of the return message.

Request message:
access_req req
byt es dat a

The dat a field contains the overlay state information to be restored.

Return message:

NONE

3.5REQ_OVL_TRANS VECT ADDR (4)

Request to check if the input overlay address is actually an overlay vector. This request maps onto the
overlay manager's TRANSLATE VECTOR_ADDR request. See the Overlay Manager Interface
document for more information on the contents of the messages.

Request message:
access_req req
ovl _address ovl _addr

Theov! _addr field containsthe overlay address. Theovl _addr field is defined asfollows:

The Requests 30

typedef struct {
addr32_ptr mach;
unsi gned_16 sect _id;

}

The mach field is the machine address. The sect _i d field stores the number of entries down in the
overlay stack.

Return message:

ovl _address ovl _addr
The trandlated address will be returned in the ovl _addr field. If the addressis not an overlay vector, then
the input address will be returned and thesect i on_i d field will be zero.
3.6 REQ OVL_TRANS RET_ADDR (5)
Request to check if the address is the overlay manager parallel return code. This request maps onto the

overlay manager's TRANSLATE_RETURN_ADDR request. See the Overlay Manager Interface
document for more information on the contents of the messages.

Request message:

access_req req

ovl _address ovl _addr
Return message:

ovl _address ovl _addr

The trandlated address will be returned in the ovl _addr field. If the addressis not an parallel return code,
then the input address will be returned and thesect i on_i d field in the structure ovl _addr will be zero.

3.7REQ OVL_GET_REMAP_ENTRY (6)

Request to check if the overlay address needs to be remapped. This request maps onto the overlay
manager's GET_MOVED_SECTION request. See the Overlay Manager Interface document for more
information on the contents of the messages.

Request message:
access_req req
ovl _address ovl _addr

Theovl _addr field contains the overlay address.

Return message:

The Requests 31

unsi gned_8 r emapped
ovl _address ovl _addr

If the address gets remapped the r enapped field will return one. The remapped address will be returned
intheovl _addr field. Theinput addresswill be unchanged if the address has not been remapped.

4 Thread requests

This section descibes requests that deal with threads. These requests are actually performed by the core
request REQ_PERFORM_SUPPLEMENTARY _SERVICE and appropriate service id. The following
descriptions do not show do not show that "prefix" to the request messages.

The service name to be used inthe REQ_GET_SUPPLEMENTARY _SERVICE is"Threads".

4.1 REQ THREAD_GET_NEXT (0)

Request to get next thread.

Request message:
access_req req
unsi gned_32 t hr ead

The t hr ead contains the either a zero to get information on the first thread, or the value of the t hr ead
field in the return message of a previous regquest.

Return message:
unsi gned_32 t hread
unsi gned_8 state

The t hr ead field returns the thread ID. There are no more threads in the list, it will contain zero. The
st at e field can have two values:

THREAD _THAWED
THREAD_FROZEN

I
= O

4.2 REQ THREAD_SET (1)

Request to set a given thread ID to be the current thread.

Request message:
access_req req
unsi gned_32 t hr ead

The Requests 32

Thet hr ead contains the thread number to set. If it's zero, do not attempt to set the thread, just return the
current thread id.

Return message:
trap_error error
unsi gned_32 ol d_t hread

Theol d_t hr ead field returns the previous thread id. If the set fails, the err field will be non-zero.

43 REQ THREAD_FREEZE (2)

Request to freeze athread so that it will not be run next time when executing the task program.

Request message:
access_req req
unsi gned_32 t hr ead

Thet hr ead contains the thread number to freeze.

Return message:

trap_error err

If the thread cannot be frozen, the er r field returns non zero value.

44 REQ THREAD _THAW (3)

Request to alow athread to run next time when executing the program.

Request message:
access_req req
unsi gned_32 t hread

Thet hr ead contains the thread number to thaw.

Return message:

trap_error err

If the thread cannot be thawed, the er r field returns non zero value.

The Requests 33

45REQ THREAD_GET_EXTRA (4)

Request to get extra information about a thread. This is arbitrary textual data which the debugger merely
displays in its thread window. The trap file can place any information in the return message which it feels
would be useful for the user to know.

Request message:
access_req req
unsi gned_32 thread

The t hr ead field contains the thread ID. A zero value means to get the title string for the thread extra
information. Thisis displayed at the top of the thread window.

Return message:

string extra

The extrainformation of the thread will be returned in ext r a field.

5 RFX requests

This section deals with requests that are only used by the RFX program. These requests are actually
performed by the core request REQ_PERFORM_SUPPLEMENTARY _SERVICE and appropriate service
id. The following descriptions do not show do not show that "prefix" to the request messages.

The service name to be used in the REQ_GET_SUPPLEMENTARY _SERVICE is"RFX".

5.1 REQ RFX_RENAME (0)

Request to rename afile on the debuggee’ s system.

Request message:
access_req req
string from nane
string t o_nanme

The file whose name is indicated by the field f r om_name will be renamed to the name given by the field
t o_nane

Return message:

The Requests 34

trap_error err

If error has occurred, theer r field will return the error code number.

52 REQ_RFX_MKDIR (1)

Request to create adirectory on the debuggee's system.

Request message:
access_req req
string di r _nanme

Thedi r _nane field contains the name of the directory to be created.

Return message:

trap_error err

If error has occurred when creating the directory, the er r field will return the error code number.

53 REQ RFX_RMDIR (2)

Request to remove a directory on the debuggee' s system.

Request message:
access_req req
string di r _nane

Thedi r _nane field contains the name of the directory to be removed.

Return message:
trap_error err

If error has occurred, the er r field will return the error code number.

5.4 REQ RFX_SETDRIVE (3)

Request to set the current drive on the debuggee's system.

Request message:

The Requests

35

access_req req
unsi gned_8 drive

Thedri ve field contains the drive number to be set on the debuggee' s system.

Return message:

trap_error err

If error has occurred, theer r field will return the error code number.

55REQ_RFX_GETDRIVE (4)

Request to get the current drive on the debuggee’s system.

Request message:

access_req req
Ther eq field contains the request.

Return message:

unsi gned_8 drive

Thedri ve field returns the current drive number on the debuggee' s system.

5.6 REQ RFX_SETCWD (5)

Request to set a directory on the debuggee' s system.

Request message:
access_req req
string di r _nane

Thedi r _nane field contains the name of the directory to be set.

Return message:

trap_error err

If error has occurred, the er r field will return the error code number.

The Requests

36

5.7 REQ_RFX_GETCWD (6)

Request to get the current directory name on the debuggee’ s system.

Request message:
access_req req
unsi gned_8 drive

Thedri ve field contains the target drive number.

Return message:
trap_error err
string di r _nane

The di r _namne field contains the name of the directory to be set. If error has occurred, the er r field will
return the error code number.

5.8 REQ_RFX_SETDATETIME (7)

Request to set the date and time information on the debuggee’ s system.

Request message:
access_req req
trap_f handl e handl e
time_t time

The handl e contains the file handle. Thet i me field follows the UNIX time format. Theti me represents
the time since January 1, 1970 (UTC).

Return message:

NONE

5.9 REQ RFX_GETDATETIME (8)

Request to get the date and time information on the debuggee’ s system.

Request message:

access_req req
trap_fhandl e handl e

The Requests 37

The handl e contains the file handle.

Return message:
time_t time

Thet i me field follows the UNIX time format. Thet i me represents the time since January 1, 1970 (UTC).

5.10 REQ_RFX_GETFREESPACE (9)

Request to get the amount of free space left on the drive.

Request message:
access_req req
unsi gned_8 drive

Thedri ve field contains the target drive number.

Return message:

unsi gned_32 si ze

Thesi ze field returns the number of bytes left on the drive.

511 REQ RFX_SETFILEATTR (10)

Request to set the file attribute of afile.

Request message:
access_req req
unsi gned_32 attribute
string name

The nane field contains the name whose attributes are to be set. The att ri but e field contains the new
attributes of thefile.

Return message:

trap_error err

If error has occurred, the er r field will return the error code number.

The Requests 38

5.12 REQ RFX_GETFILEATTR (11)

Request to get the file attribute of afile.

Request message:
access_req req
string nane

The nane field contains the name to be checked.

Return message:
unsi gned_32 attribute

Theat t ri but e field returns the attribute of thefile.

5.13REQ_RFX_NAMETOCANNONICAL (12)

Request to convert afile name to its canonical form.

Request message:
access_req req
string file_name

Thefil e_name field contains the file name to be converted.

Return message:
trap_error err
string pat h_name

If there is no error, the err field returns a zero and the full path name will be stored in the pat h_nane
field. When an error has occurred, the er r field contains an error code indicating the type of error that has
been detected.

5.14 REQ RFX_FINDFIRST (13)

Request to find the first file in adirectory.

Request message:

The Requests 39

access_req req
unsi gned_8 attrib

string nane

The nane field contains the name of the directory and the at t ri b field contains the attribute of the filesto
list in the directory.

Return message:
trap_error err
dta info

If found, the err field will be zero. The location and information of about the first file will be in the
structurei nf o. Definition of the structure dt a is as follows:

typedef struct dta {

struct {
char i _dunno[13];
unsi gned int dir_entry_num
unsi gned i nt cluster;
char i _still_dunno[4];

} dos;

char attr;

unsi gned i nt time;

unsi gned i nt dat e;

| ong si ze;

char name[14] ;

} dta;

5.15 REQ_RFX_FINDNEXT (14)

Request to find the next file in the directory. This request should be used only after
REQ_RFX_FINDFIRST.

Request message:
access_req req
dta info

The req field contains the request. The info field contains the dta returned from the previous
REQ FIND_NEXT or REQ FIND_FIRST.

Return message:
trap_error err
dta info

The Requests 40

Thei nf o fieldisthe sameasin REQ FIND FIRST.

5.16 REQ_RFX_FINDCLOSE (15)

Request to end the directory search operation.

Request message:

access_req req
Ther eq field contains the request.

Return message:

trap_error err

If successful, theerr field will be zero, otherwise the system error code will be returned.

The Requests

41

System Dependent Aspects

Every environment has a different method of loading the code for the trap file and locating the Traplnit,
TrapRequest, and TrapFini routines. This section descibes how the WATCOM debugger performs these
operations for the various systems.

1Trap FilesUnder DOS

A trap file is an "EXE" format file with the extension ".TRP". The debugger searches the directories
specified by the PATH environment variable. Once found, it is loaded into memory and has the normal
EXE style relocations applied to the image. Then the lowest address in the load image (NOTE: not the
starting address from EXE header information) is examined for the following structure:

typedef struct {
unsi gned_16 signature; /* == OxDEAF */
unsi gned_16 init_off;
unsi gned_16 acc_of f;
unsigned_16 fini_off;
} trap_header;

If the first 2 bytes contain the value OXDEAF, the file is considered to be a valid trap file and the
init_off,acc_off,andfini_of f fieldsareused to obtain the offsets of the Traplnit, TrapRequest, and
TrapFini routines repectively.

The starting address field of the EXE header should be set to point at some code which prints out a
message about not being able to be run from the command line and then terminates.

2Trap FilesUnder OS/2

A trap fileisanormal OS/2 1.x DLL. The system automatically searches the directories specified by the
LIBPATH command in the CONFIG.SY S file. Once loaded, the WATCOM debugger uses export ordinal
1 from the DLL for Traplnit, export ordinal 2 for TrapFini and export ordinal 3 for TrapRequest. Some
example code follows:

System Dependent Aspects 42

rc = DosLoadMbdul e(NULL, O, trap_file_nane, &dl|_nodule);
if(rc!=0)
return("unable to load trap file");

| =
DosGet ProcAddr (dl | _nmodul e, "#2", &TrapFini) !=
DosGet ProcAddr (dl | _nodul e, "#3", &TrapRequest)
return("incorrect version of trap file");

i f(DosGetProcAddr(dIl _nodule, "#1", &Traplnit) 0
I 0
I =0) {

}

3 Trap FilesUnder Windows.

A trap file isa norma Windows DLL. The system automatically searches the directories specified by the
PATH environment variable. Once loaded, the WATCOM debugger uses export ordina 2 from the DLL
for Traplnit, export ordinal 3 for TrapFini and export ordina 4 for TrapReguest. Some example code
follows:

dll = LoadLibrary(trap_file_nane);
if(dll <32) {
return("unable to load trap file");

}
Traplnit = (LPVO D) GetProcAddress(dll, (LPSTR)2);
Tr apFi ni = (LPVO D) CetProcAddress(dll, (LPSTR3);

TrapRequest = (LPVO D) GetProcAddress(dll, (LPSTR4);

if(Traplnit == NULL || TrapFini == NULL || TrapRequest == NULL) {
return("incorrect version of trap file");

}

4 Trap FilesUnder WindowsNT.

A trap fileisanorma Windows NT DLL. The system automatically searches the directories specified by
the PATH environment variable. Once loaded, the WATCOM debugger uses export ordinal 1 from the
DLL for Traplnit, export ordinal 2 for TrapFini and export ordinal 3 for TrapRequest. Some example code
follows:

dll = LoadLibrary(trap_file_nane);
if(dl <32) {
return("unable to load trap file");

}
Traplnit = (LPVO D) GetProcAddress(dil, (LPSTRI1);
TrapFi ni = (LPVO D) GCetProcAddress(dil, (LPSTR)2);

TrapRequest = (LPVO D) GetProcAddress(dll, (LPSTR)3);

if(Traplnit == NULL || TrapFini == NULL || TrapRequest == NULL) {
return("incorrect version of trap file");

}

System Dependent Aspects 43

5Trap FilesUnder QNX

A trap file isa QNX load module format file with the extension ".trp" and whose file permissions are not
marked as executable. The debugger searches the directories specified by the WD _PATH environment
variable and then the "/usr/watcom/wd" directory. Once found, it is loaded into memory and has the
normal loader relocations applied to the image. Then the lowest address in the load image (NOTE: not the
starting address from load module header information) is examined for the following structure:

typedef struct {
unsi gned_16 signature; /* == OxDEAF */
unsi gned_16 init_off;
unsi gned_16 acc_of f;
unsi gned_16 fini_off;
} trap_header;

If the first 2 bytes contain the value OXDEAF, the file is considered to be a valid trap file and the
init_off,acc_off,andfini_of f fieldsareused to obtain the offsets of the Traplnit, TrapRequest, and
TrapFini routines repectively.

The starting address field of the load image header should be set to point at some code which prints out a
message about not being able to be run from the command line and then terminates.

6 Trap FilesUnder Netware 386 or PenPoint

The trap file routines are linked directly into the remote server code and Traplnit, TrapRequest, TrapFini
aredirectly called.

System Dependent Aspects 44

